Exercise-based gaming in patients with multiple sclerosis: A systematic review and meta-analysis

Supplementary Files

Supplementary File


multiple sclerosis
virtual reality

How to Cite

Elhusein, A. M., Fadlalmola, H. A., Awadalkareem, E. M., Alhusain, E. Y. M., Alnassry, S. M., Alshammari, M., Abdulrahman, E. E., Fadila, D. E. S., Ibrahim, F. M., Saeed, A. A. M., Abdalla, A., Moafa, H. N., El-Amin, E. I., & Mamanao, D. M. (2024). Exercise-based gaming in patients with multiple sclerosis: A systematic review and meta-analysis. Belitung Nursing Journal, 10(1), 1–14. https://doi.org/10.33546/bnj.3006
Google Scholar

Link to Google Scholar

Accepted for publication: 2024-01-22
Peer reviewed: Yes

Related articles in

Search Relations - Article by Author(s)

Share this article on:


Background: Multiple sclerosis presents a significant burden, with balance disturbances impacting patients’ daily living. Conventional therapies have been supplemented with technological advancements like virtual reality (VR) and exergaming, providing engaging, multisensory rehabilitation options.

Objective: This study aimed to synthesize evidence on exergaming’s role in multiple sclerosis treatment, particularly to evaluate the impact of exergaming on cognitive, motor, and psychological outcomes in patients with multiple sclerosis.

Methods: A systematic review and subsequent meta-analysis design were employed. An extensive search was conducted up to June 2023 across five electronic databases - Web of Science, Scopus, PubMed, Cochrane, and EMBASE. The data extraction process from the selected studies was conducted independently. The risk of bias was assessed using the Cochrane Risk of Bias Assessment Tool 1 (ROB1) and the National Institutes of Health (NIH) assessment tool. Continuous outcomes were consolidated as mean differences (MD) with 95% confidence intervals (CIs). Meta-analyses were performed using RevMan ver. 5.4.

Results: Out of 1,029 studies, 27 were included for meta-analysis. There were no significant differences in cognitive outcomes between the exergaming and the no-intervention group or the Conventional Physiotherapy and Rehabilitation interventions (CPRh) subgroups. However, the Symbol Digit Modalities Test (SDMT) showed a statistically significant difference in favor of exergaming in the no-intervention subgroup (MD = 5.40, 95% CI [0.08, 10.72], p = 0.05). In motor outcomes, exergaming only demonstrated better results in the 6-minute walking test compared to the no-intervention group (MD = 25.53, 95% CI [6.87, 44.19], p = 0.007). The Berg Balance Scale score in both studied subgroups and the Timed Up and Go (TUG) test in the no-intervention group favored exergaming. In terms of psychological outcomes, the Beck Depression Inventory did not reveal any significant differences, while the Modified Fatigue Impact Scale (MFIS) score favored exergaming in the CPRh subgroup.

Conclusion: Exergaming shows promise for enhancing cognitive and motor functions, motivation, adherence, and quality of life in MS patients, which is beneficial for nurses. It can be tailored to individual preferences and easily conducted at home, potentially serving as a viable alternative to traditional rehab programs, especially during relapses. However, further research is necessary to fully understand its optimal and lasting benefits.



Copyright (c) 2024 Amal Mohamed Elhusein, Hammad Ali Fadlalmola, Eltayeb Mohammed Awadalkareem, Ekram Yahia Mahmowd Alhusain, Soad Mohamed Alnassry, Mukhlid Alshammari, Elsadig Eltahir Abdulrahman, Doaa El Sayed Fadila, Fatma M. Ibrahim, Abdalrahman Abdallatif Mohmmed Saeed, Adel Abdalla, Hassan N Moafa, Ehab I. El-Amin, Daniel Mon Mamanao

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Article Metrics

Total views 275 [Abstract: 132 | PDF: 139 | Supplementary File: 0 | XML: 4 ]


Download data is not yet available.

PlumX Metrics

Declaration of Conflicting Interest

The authors have no conflicts of interest to disclose.



Authors’ Contributions

AME spearheaded the project from conceptualization to manuscript drafting, conducting most core tasks like data extraction and statistical analysis. HF, EMA, and EEA offered design and statistical expertise while reviewing the manuscript. MA focused on rigorous statistical analysis and methodology review. EYMA, SMAA, DESF, and DMM were crucial in study quality assessment and discussion insights. FMI, AAMS, and AA contributed to data extraction and statistical elements. HNM and EIEA played key roles in interpreting findings and manuscript revisions. All authors approved the final version of the article to be published.

Data Availability

All data analyzed during this study are included in published articles and databases that are publicly accessible. The data sets used for the meta-analysis are available from the corresponding author upon reasonable request.

Declaration of Use of AI in Scientific Writing

There is nothing to declare.

Ethical Considerations

Not applicable.


Abou, L., Malala, V. D., Yarnot, R., Alluri, A., & Rice, L. A. (2020). Effects of virtual reality therapy on gait and balance among individuals with spinal cord injury: A systematic review and meta-analysis. Neurorehabilitation and Neural Repair, 34(5), 375-388. https://doi.org/10.1177/1545968320913515

Agostini, F., Pezzi, L., Paoloni, M., Insabella, R., Attanasi, C., Bernetti, A., Saggini, R., Mangone, M., & Paolucci, T. (2021). Motor imagery: A resource in the fatigue rehabilitation for return-to-work in multiple sclerosis patients—A mini systematic review. Frontiers in Neurology, 12, 696276. https://doi.org/10.3389/fneur.2021.696276

Amatya, B., Khan, F., & Galea, M. (2019). Rehabilitation for people with multiple sclerosis: An overview of Cochrane Reviews. Cochrane Database of Systematic Reviews(1), CD012732. https://doi.org/10.1002/14651858.CD012732.pub2

Amiri, Z., Sekhavat, Y. A., & Goljaryan, S. (2018, 2018). A framework for rehabilitation games to improve balance in people with multiple sclerosis (MS). 2018 2nd National and 1st International Digital Games Research Conference: Trends, Technologies, and Applications (DGRC), Tehran, Iran.

Benedict, R. H. B., Pol, J., Yasin, F., Hojnacki, D., Kolb, C., Eckert, S., Tacca, B., Drake, A., Wojcik, C., & Morrow, S. A. (2021). Recovery of cognitive function after relapse in multiple sclerosis. Multiple Sclerosis Journal, 27(1), 71-78. https://doi.org/10.1177/1352458519898108

Bove, R., Rowles, W., Zhao, C., Anderson, A., Friedman, S., Langdon, D., Alexander, A., Sacco, S., Henry, R., & Gazzaley, A. (2021). A novel in-home digital treatment to improve processing speed in people with multiple sclerosis: A pilot study. Multiple Sclerosis Journal, 27(5), 778-789. https://doi.org/10.1177/1352458520930371

Brichetto, G., Spallarossa, P., de Carvalho, M. L. L., & Battaglia, M. A. (2013). The effect of Nintendo® Wii® on balance in people with multiple sclerosis: a pilot randomized control study. Multiple Sclerosis Journal, 19(9), 1219-1221. https://doi.org/10.1177/1352458512472747

Calabro, R. S., Russo, M., Naro, A., De Luca, R., Leo, A., Tomasello, P., Molonia, F., Dattola, V., Bramanti, A., & Bramanti, P. (2017). Robotic gait training in multiple sclerosis rehabilitation: Can virtual reality make the difference? Findings from a randomized controlled trial. Journal of the Neurological Sciences, 377, 25-30. https://doi.org/10.1016/j.jns.2017.03.047

Calafiore, D., Invernizzi, M., Ammendolia, A., Marotta, N., Fortunato, F., Paolucci, T., Ferraro, F., Curci, C., Cwirlej-Sozanska, A., & de Sire, A. (2021). Efficacy of virtual reality and exergaming in improving balance in patients with multiple sclerosis: A systematic review and meta-analysis. Frontiers in Neurology, 12, 773459. https://doi.org/10.3389/fneur.2021.773459

Cameron, M. H., & Nilsagard, Y. (2018). Balance, gait, and falls in multiple sclerosis. Handbook of Clinical Neurology, 159, 237-250. https://doi.org/10.1016/B978-0-444-63916-5.00015-X

Canning, C. G., Allen, N. E., Nackaerts, E., Paul, S. S., Nieuwboer, A., & Gilat, M. (2020). Virtual reality in research and rehabilitation of gait and balance in Parkinson disease. Nature Reviews Neurology, 16(8), 409-425. https://doi.org/10.1038/s41582-020-0370-2

Chesser, B. T., Blythe, S. A., Ridge, L. D., Tomaszewski, R. E. R., & Kinne, B. L. (2020). Effectiveness of the Wii for pediatric rehabilitation in individuals with cerebral palsy: A systematic review. Physical Therapy Reviews, 25(2), 106-117. https://doi.org/10.1080/10833196.2020.1740402

Correale, L., Buzzachera, C. F., Liberali, G., Codrons, E., Mallucci, G., Vandoni, M., Montomoli, C., & Bergamaschi, R. (2021). Effects of combined endurance and resistance training in women with multiple sclerosis: A randomized controlled study. Frontiers in Neurology, 12, 698460. https://doi.org/10.3389/fneur.2021.698460

Cortes-Perez, I., Osuna-Pérez, M. C., Montoro-Cárdenas, D., Lomas-Vega, R., Obrero-Gaitán, E., & Nieto-Escamez, F. A. (2023). Virtual reality-based therapy improves balance and reduces fear of falling in patients with multiple sclerosis. A systematic review and meta-analysis of randomized controlled trials. Journal of Neuroengineering and Rehabilitation, 20, 42. https://doi.org/10.1186/s12984-023-01174-z

Costa, M. T. S., Vieira, L. P., de Oliveira Barbosa, E., Oliveira, L. M., Maillot, P., Vaghetti, C. A. O., Carta, M. G., Machado, S., Gatica-Rojas, V., & Monteiro-Junior, R. S. (2019). Virtual reality-based exercise with exergames as medicine in different contexts: A short review. Clinical Practice and Epidemiology in Mental Health: CP & EMH, 15, 15-20. https://doi.org/10.2174%2F1745017901915010015

Cuesta-Gómez, A., Martín-Díaz, P., Sánchez-Herrera Baeza, P., Martínez-Medina, A., Ortiz-Comino, C., & Cano-de-la-Cuerda, R. (2022). Nintendo switch joy‐cons’ infrared motion camera sensor for training manual dexterity in people with multiple sclerosis: A randomized controlled trial. Journal of Clinical Medicine, 11(12), 3261. https://doi.org/10.3390/jcm11123261

De Sire, A., Bigoni, M., Priano, L., Baudo, S., Solaro, C., & Mauro, A. (2019). Constraint-induced movement therapy in multiple sclerosis: Safety and three-dimensional kinematic analysis of upper limb activity. A randomized single-blind pilot study. NeuroRehabilitation, 45(2), 247-254. https://doi.org/10.3233/NRE-192762

Dogan, M., Ayvat, E., & Kılınç, M. (2023). Telerehabilitation versus virtual reality supported task-oriented circuit therapy on upper limbs and trunk functions in patients with multiple sclerosis: A randomized controlled study. Multiple Sclerosis and Related Disorders, 71, 104558. https://doi.org/10.1016/j.msard.2023.104558

Eftekharsadat, B., Babaei-Ghazani, A., Mohammadzadeh, M., Talebi, M., Eslamian, F., & Azari, E. (2015). Effect of virtual reality-based balance training in multiple sclerosis. Neurological Research, 37(6), 539-544. https://doi.org/10.1179/1743132815Y.0000000013

Feys, P., & Straudi, S. (2019). Beyond therapists: Technology-aided physical MS rehabilitation delivery. Multiple Sclerosis Journal, 25(10), 1387-1393. https://doi.org/10.1177/1352458519848968

Galperin, I., Mirelman, A., Schmitz-Hübsch, T., Hsieh, K. L., Regev, K., Karni, A., Brozgol, M., Cornejo Thumm, P., Lynch, S. G., & Paul, F. (2023). Treadmill training with virtual reality to enhance gait and cognitive function among people with multiple sclerosis: A randomized controlled trial. Journal of Neurology, 270(3), 1388-1401. https://doi.org/10.1007/s00415-022-11469-1

Garcia-Bravo, S., Cuesta-Gómez, A., Campuzano-Ruiz, R., López-Navas, M. J., Domínguez-Paniagua, J., Araújo-Narváez, A., Barreñada-Copete, E., García-Bravo, C., Flórez-García, M. T., & Botas-Rodríguez, J. (2021). Virtual reality and video games in cardiac rehabilitation programs. A systematic review. Disability and Rehabilitation, 43(4), 448-457. https://doi.org/10.1080/09638288.2019.1631892

Giedraitiene, N., Kaubrys, G., & Kizlaitiene, R. (2018). Cognition during and after multiple sclerosis relapse as assessed with the brief international cognitive assessment for multiple sclerosis. Scientific Reports, 8(1), 8169. https://doi.org/10.1038/s41598-018-26449-7

Givon Schaham, N., Zeilig, G., Weingarden, H., & Rand, D. (2018). Game analysis and clinical use of the Xbox-Kinect for stroke rehabilitation. International Journal of Rehabilitation Research, 41(4), 323-330. https://doi.org/10.1097/MRR.0000000000000302

Goljar, N., Burger, H., Rudolf, M., & Stanonik, I. (2010). Improving balance in subacute stroke patients: A randomized controlled study. International Journal of Rehabilitation Research, 33(3), 205-210. https://doi.org/10.1097/MRR.0b013e328333de61

Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (2019). Cochrane handbook for systematic reviews of interventions (2nd ed.). Wiley Online Library. https://doi.org/10.1002/9781119536604

Hoang, P., Schoene, D., Gandevia, S., Smith, S., & Lord, S. R. (2015). Effects of a home-based step training programme on balance, stepping, cognition and functional performance in people with multiple sclerosis–a randomized controlled trial. Multiple Sclerosis Journal, 22(1), 94-103. https://doi.org/10.1177/1352458515579442

Kalron, A., Fonkatz, I., Frid, L., Baransi, H., & Achiron, A. (2016). The effect of balance training on postural control in people with multiple sclerosis using the CAREN virtual reality system: A pilot randomized controlled trial. Journal of Neuroengineering and Rehabilitation, 13, 13. https://doi.org/10.1186/s12984-016-0124-y

Khalil, H., Al-Sharman, A., El-Salem, K., Alghwiri, A. A., Al-Shorafat, D., & Khazaaleh, S. (2018). The development and pilot evaluation of virtual reality balance scenarios in people with multiple sclerosis (MS): A feasibility study. NeuroRehabilitation, 43(4), 473-482. https://doi.org/10.3233/NRE-182471

Kraft, A. K., & Berger, K. (2021). Quality of care for patients with multiple sclerosis—a review of existing quality indicators. Frontiers in Neurology, 12, 708723. https://doi.org/10.3389/fneur.2021.708723

Lamargue, D., Koubiyr, I., Deloire, M., Saubusse, A., Charre-Morin, J., Moroso, A., Coupé, P., Brochet, B., & Ruet, A. (2020). Effect of cognitive rehabilitation on neuropsychological and semiecological testing and on daily cognitive functioning in multiple sclerosis: The REACTIV randomized controlled study. Journal of the Neurological Sciences, 415, 116929. https://doi.org/10.1016/j.jns.2020.116929

Laver, K. E., Lange, B., George, S., Deutsch, J. E., Saposnik, G., & Crotty, M. (2015). Virtual reality for stroke rehabilitation. Cochrane Database of Systematic Reviews(11), CD008349. https://doi.org/10.1002/14651858.CD008349.pub3

Lee, S., Kim, W., Park, T., & Peng, W. (2017). The psychological effects of playing exergames: A systematic review. Cyberpsychology, Behavior, and Social Networking, 20(9), 513-532. https://doi.org/10.1089/cyber.2017.0183

Leonardi, S., Maggio, M. G., Russo, M., Bramanti, A., Arcadi, F. A., Naro, A., Calabro, R. S., & De Luca, R. (2021). Cognitive recovery in people with relapsing/remitting multiple sclerosis: A randomized clinical trial on virtual reality-based neurorehabilitation. Clinical Neurology and Neurosurgery, 208, 106828. https://doi.org/10.1016/j.clineuro.2021.106828

Liao, Y.-Y., Yang, Y.-R., Cheng, S.-J., Wu, Y.-R., Fuh, J.-L., & Wang, R.-Y. (2015). Virtual reality–based training to improve obstacle-crossing performance and dynamic balance in patients with Parkinson’s disease. Neurorehabilitation and Neural Repair, 29(7), 658-667. https://doi.org/10.1177/1545968314562111

Lozano-Quilis, J.-A., Gil-Gómez, H., Gil-Gómez, J.-A., Albiol-Pérez, S., Palacios-Navarro, G., Fardoun, H. M., & Mashat, A. S. (2014). Virtual rehabilitation for multiple sclerosis using a kinect-based system: Randomized controlled trial. JMIR Serious Games, 2(2), e2933. https://doi.org/10.2196/games.2933

Maggio, M. G., De Luca, R., Manuli, A., Buda, A., Foti Cuzzola, M., Leonardi, S., D’Aleo, G., Bramanti, P., Russo, M., & Calabrò, R. S. (2022). Do patients with multiple sclerosis benefit from semi-immersive virtual reality? A randomized clinical trial on cognitive and motor outcomes. Applied Neuropsychology: Adult, 29(1), 59-65. https://doi.org/10.1080/23279095.2019.1708364

Maggio, M. G., Russo, M., Cuzzola, M. F., Destro, M., La Rosa, G., Molonia, F., Bramanti, P., Lombardo, G., De Luca, R., & Calabrò, R. S. (2019). Virtual reality in multiple sclerosis rehabilitation: A review on cognitive and motor outcomes. Journal of Clinical Neuroscience, 65, 106-111. https://doi.org/10.1016/j.jocn.2019.03.017

Marotta, N., Demeco, A., Indino, A., de Scorpio, G., Moggio, L., & Ammendolia, A. (2022). Nintendo WiiTM versus Xbox KinectTM for functional locomotion in people with Parkinson’s disease: A systematic review and network meta-analysis. Disability and Rehabilitation, 44(3), 331-336. https://doi.org/10.1080/09638288.2020.1768301

Matjac✓ ić, Z., & Zupan, A. (2006). Effects of dynamic balance training during standing and stepping in patients with hereditary sensory motor neuropathy. Disability and Rehabilitation, 28(23), 1455-1459. https://doi.org/10.1080/09638280600646169

McGinley, M. P., Goldschmidt, C. H., & Rae-Grant, A. D. (2021). Diagnosis and treatment of multiple sclerosis: A review. JAMA, 325(8), 765-779. https://doi.org/10.1001/jama.2020.26858

Molhemi, F., Mehravar, M., Monjezi, S., Salehi, R., Negahban, H., Shaterzadeh-Yazdi, M.-J., & Majdinasab, N. (2022). Effects of exergaming on cognition, lower limb functional coordination, and stepping time in people with multiple sclerosis: A randomized controlled trial. Disability and Rehabilitation, 45(8), 1343-1351. https://doi.org/10.1080/09638288.2022.2060332

Molhemi, F., Monjezi, S., Mehravar, M., Shaterzadeh-Yazdi, M.-J., Salehi, R., Hesam, S., & Mohammadianinejad, E. (2020). Effects of virtual reality vs conventional balance training on balance and falls in people with multiple sclerosis: A randomized controlled trial. Archives of Physical Medicine and Rehabilitation, 102(2), 290-299. https://doi.org/10.1016/j.apmr.2020.09.395

Motl, R. W., Sandroff, B. M., Kwakkel, G., Dalgas, U., Feinstein, A., Heesen, C., Feys, P., & Thompson, A. J. (2017). Exercise in patients with multiple sclerosis. The Lancet Neurology, 16(10), 848-856. https://doi.org/10.1016/S1474-4422(17)30281-8

Munari, D., Fonte, C., Varalta, V., Battistuzzi, E., Cassini, S., Montagnoli, A. P., Gandolfi, M., Modenese, A., Filippetti, M., & Smania, N. (2020). Effects of robot-assisted gait training combined with virtual reality on motor and cognitive functions in patients with multiple sclerosis: A pilot, single-blind, randomized controlled trial. Restorative Neurology and Neuroscience, 38(2), 151-164. https://doi.org/10.3233/RNN-190974

Nguyen, A.-V., Ong, Y.-L. A., Luo, C. X., Thuraisingam, T., Rubino, M., Levin, M. F., Kaizer, F., & Archambault, P. S. (2018). Virtual reality exergaming as adjunctive therapy in a sub-acute stroke rehabilitation setting: Facilitators and barriers. Disability and Rehabilitation: Assistive Technology, 14(4), 317-324. https://doi.org/10.1080/17483107.2018.1447608

Nilsagard, Y., Lundholm, C., Gunnarsson, L. G., & Denison, E. (2007). Clinical relevance using timed walk tests and ‘timed up and go’testing in persons with multiple sclerosis. Physiotherapy Research International, 12(2), 105-114. https://doi.org/10.1002/pri.358

Nilsagard, Y. E., Forsberg, A. S., & von Koch, L. (2012). Balance exercise for persons with multiple sclerosis using Wii games: A randomised, controlled multi-centre study. Multiple Sclerosis Journal, 19(2), 209-216. https://doi.org/10.1177/1352458512450088

Norouzi, E., Gerber, M., Pühse, U., Vaezmosavi, M., & Brand, S. (2021). Combined virtual reality and physical training improved the bimanual coordination of women with multiple sclerosis. Neuropsychological Rehabilitation, 31(4), 552-569. https://doi.org/10.1080/09602011.2020.1715231

OLoughlin, E. K., Dutczak, H., Kakinami, L., Consalvo, M., McGrath, J. J., & Barnett, T. A. (2020). Exergaming in youth and young adults: A narrative overview. Games for Health Journal, 9(5), 314-338. https://doi.org/10.1089/g4h.2019.0008

OMalley, N., Clifford, A. M., Comber, L., & Coote, S. (2022). Fall definitions, faller classifications and outcomes used in falls research among people with multiple sclerosis: A systematic review. Disability and Rehabilitation, 44(6), 855-863. https://doi.org/10.1080/09638288.2020.1786173

Ortiz-Gutiérrez, R., Cano-de-la-Cuerda, R., Galán-del-Río, F., Alguacil-Diego, I. M., Palacios-Ceña, D., & Miangolarra-Page, J. C. (2013). A telerehabilitation program improves postural control in multiple sclerosis patients: A Spanish preliminary study. International Journal of Environmental Research and Public Health, 10(11), 5697-5710. https://doi.org/10.3390/ijerph10115697

Ozakbas, S., Cagiran, I., Ormeci, B., & Idiman, E. (2004). Correlations between multiple sclerosis functional composite, expanded disability status scale and health-related quality of life during and after treatment of relapses in patients with multiple sclerosis. Journal of the Neurological Sciences, 218(1-2), 3-7. https://doi.org/10.1016/j.jns.2003.09.015

Ozdogar, A. T., Baba, C., Kahraman, T., Sagici, O., Dastan, S., Ertekin, O., & Ozakbas, S. (2022). Effects and safety of exergaming in persons with multiple sclerosis during corticosteroid treatment: A pilot study. Multiple Sclerosis and Related Disorders, 63, 103823. https://doi.org/10.1016/j.msard.2022.103823

Ozdogar, A. T., Ertekin, O., Kahraman, T., Dastan, S., & Ozakbas, S. (2023). Effect of exergaming in people with restless legs syndrome with multiple sclerosis: A single-blind randomized controlled trial. Multiple Sclerosis and Related Disorders, 70, 104480. https://doi.org/10.1016/j.msard.2022.104480

Ozdogar, A. T., Ertekin, O., Kahraman, T., Yigit, P., & Ozakbas, S. (2020). Effect of video-based exergaming on arm and cognitive function in persons with multiple sclerosis: A randomized controlled trial. Multiple Sclerosis and Related Disorders, 40, 101966. https://doi.org/10.1016/j.msard.2020.101966

Ozkul, C., Guclu-Gunduz, A., Yazici, G., Guzel, N. A., & Irkec, C. (2020). Effect of immersive virtual reality on balance, mobility, and fatigue in patients with multiple sclerosis: A single-blinded randomized controlled trial. European Journal of Integrative Medicine, 35, 101092. https://doi.org/10.1016/j.eujim.2020.101092

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., & Brennan, S. E. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1), 1-11. https://doi.org/10.1186/s13643-021-01626-4

Pagliari, C., Di Tella, S., Jonsdottir, J., Mendozzi, L., Rovaris, M., De Icco, R., Milanesi, T., Federico, S., Agostini, M., & Goffredo, M. (2021). Effects of home-based virtual reality telerehabilitation system in people with multiple sclerosis: A randomized controlled trial. Journal of Telemedicine and Telecare, 30(2), 344-355. https://doi.org/10.1177/1357633X211054839

Paltamaa, J., Sjögren, T., Peurala, S. H., & Heinonen, A. (2012). Effects of physiotherapy interventions on balance in multiple sclerosis: A systematic review and meta-analysis of randomized controlled trials. Journal of Rehabilitation Medicine, 44(10), 811-823. https://doi.org/10.2340/16501977-1047

Paolucci, T., Bernetti, A., Sbardella, S., La Russa, C., Murgia, M., Salomè, A., Villani, C., Altieri, M., Santilli, V., & Paoloni, M. (2020). Straighten your back! Self-correction posture and postural balance in “non rehabilitative instructed” multiple sclerosis patients. NeuroRehabilitation, 46(3), 333-341. https://doi.org/10.3233/NRE-192987

Patti, F., Chisari, C. G., D'Amico, E., Annovazzi, P., Banfi, P., Bergamaschi, R., Clerici, R., Conti, M. Z., Cortese, A., & Fantozzi, R. (2020). Clinical and patient determinants of changing therapy in relapsing-remitting multiple sclerosis (SWITCH study). Multiple Sclerosis and Related Disorders, 42, 102124. https://doi.org/10.1016/j.msard.2020.102124

Pearson, M., Dieberg, G., & Smart, N. (2015). Exercise as a therapy for improvement of walking ability in adults with multiple sclerosis: A meta-analysis. Archives of Physical Medicine and Rehabilitation, 96(7), 1339-1348. https://doi.org/10.1016/j.apmr.2015.02.011

Perrochon, A., Borel, B., Istrate, D., Compagnat, M., & Daviet, J.-C. (2019). Exercise-based games interventions at home in individuals with a neurological disease: A systematic review and meta-analysis. Annals of Physical and Rehabilitation Medicine, 62(5), 366-378. https://doi.org/10.1016/j.rehab.2019.04.004

Peruzzi, A., Zarbo, I. R., Cereatti, A., Della Croce, U., & Mirelman, A. (2016). An innovative training program based on virtual reality and treadmill: effects on gait of persons with multiple sclerosis. Disability and Rehabilitation, 39(15), 1557-1563. https://doi.org/10.1080/09638288.2016.1224935

Peterka, R. J. (2018). Chapter 2 - Sensory integration for human balance control. In B. L. Day & S. R. Lord (Eds.), Handbook of clinical neurology (Vol. 159, pp. 27-42). Elsevier. https://doi.org/10.1016/B978-0-444-63916-5.00002-1

Plow, M., & Finlayson, M. (2011). Potential benefits of Nintendo Wii Fit among people with multiple sclerosis: A longitudinal pilot study. International Journal of MS Care, 13(1), 21-30. https://doi.org/10.7224/1537-2073-13.1.21

Prosperini, L., Fortuna, D., Giannì, C., Leonardi, L., Marchetti, M. R., & Pozzilli, C. (2013). Home-based balance training using the Wii balance board: A randomized, crossover pilot study in multiple sclerosis. Neurorehabilitation and Neural Repair, 27(6), 516-525. https://doi.org/10.1177/1545968313478484

Pruszynska, M., Milewska-Jędrzejczak, M., Bednarski, I., Szpakowski, P., Głąbiński, A., & Tadeja, S. K. (2022). Towards effective telerehabilitation: assessing effects of applying augmented reality in remote rehabilitation of patients suffering from multiple sclerosis. ACM Transactions on Accessible Computing (TACCESS), 15(4), 1-14. https://doi.org/10.1145/3560822

Robinson, J., Dixon, J., Macsween, A., Van Schaik, P., & Martin, D. (2015). The effects of exergaming on balance, gait, technology acceptance and flow experience in people with multiple sclerosis: a randomized controlled trial. BMC Sports Science, Medicine and Rehabilitation, 7(1), 1-12. https://doi.org/10.1186/s13102-015-0001-1

Solaro, C., De Sire, A., Messmer Uccelli, M., Mueller, M., Bergamaschi, R., Gasperini, C., Restivo, D. A., Stabile, M. R., & Patti, F. (2020). Efficacy of levetiracetam on upper limb movement in multiple sclerosis patients with cerebellar signs: A multicenter double‐blind, placebo‐controlled, crossover study. European Journal of Neurology, 27(11), 2209-2216. https://doi.org/10.1111/ene.14403

Song, H., Kim, J., Tenzek, K. E., & Lee, K. M. (2013). The effects of competition and competitiveness upon intrinsic motivation in exergames. Computers in Human Behavior, 29(4), 1702-1708. https://doi.org/10.1016/j.chb.2013.01.042

Streicher, M. C., Alberts, J. L., Sutliff, M. H., & Bethoux, F. (2018). Effects and feasibility of virtual reality system vs traditional physical therapy training in multiple sclerosis patients. International Journal of Therapy and Rehabilitation, 25(10), 522-528. https://doi.org/10.12968/ijtr.2018.25.10.522

Tollar, J., Nagy, F., Tóth, B. E., Török, K., Szita, K., Csutorás, B., Moizs, M., & Hortobágyi, T. (2020). Exercise effects on multiple sclerosis quality of life and clinical-motor symptoms. Medicine & Science in Sports & Exercise, 52(5), 1007-1014. https://doi.org/10.1249/MSS.0000000000002228

Walino-Paniagua, C. N., Gomez-Calero, C., Jiménez-Trujillo, M. I., Aguirre-Tejedor, L., Bermejo-Franco, A., Ortiz-Gutiérrez, R. M., & Cano-de-la-Cuerda, R. (2019). Effects of a game-based virtual reality video capture training program plus occupational therapy on manual dexterity in patients with multiple sclerosis: a randomized controlled trial. Journal of Healthcare Engineering, 2019, 9780587 https://doi.org/10.1155/2019/9780587

Walton, C., King, R., Rechtman, L., Kaye, W., Leray, E., Marrie, R. A., Robertson, N., La Rocca, N., Uitdehaag, B., & van Der Mei, I. (2020). Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS. Multiple Sclerosis Journal, 26(14), 1816-1821. https://doi.org/10.1177/1352458520970841

Yazgan, Y. Z., Tarakci, E., Tarakci, D., Ozdincler, A. R., & Kurtuncu, M. (2020). Comparison of the effects of two different exergaming systems on balance, functionality, fatigue, and quality of life in people with multiple sclerosis: A randomized controlled trial. Multiple Sclerosis and Related Disorders, 39, 101902. https://doi.org/10.1016/j.msard.2019.101902

Readers are able to give us their valuable feedbacks here. The comments will be reviewed by the editors and then published here. Important Note: The "Comments" related to the Galley Proof PDF must NOT be submitted via this form. Authors should submit their comments on their galley proofs only via system